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Abstract. In this work, we implemented the extended isogeometric method for
cracked structures in 2D. In order to approximate, the displacement fields we
have worked with interpolation functions that are based on Non-Uniform
Rational B-spline (NURBS). The traditional approximations used in the isoge-
ometric method are extended by the insertion of enrichment functions, which are
capable of capturing discontinuities and singularities in the crack tip. This
method allows modeling the cracks without being in conformity with a given
mesh. For the purpose of showing the ability to model cracks by this method, the
result obtained by the extended isogeometric method is compared with the
XFEM method.
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1 Introduction

Nowadays, the failures of many engineering structures caused mainly from crack-like
surface defects. For this reason, the evaluation of different failure modes includes
cracking is of major importance to ensure the exploitation of these structures. As a
result, the treatment and prediction of cracks is a challenge for scientific researchers and
finite element specialists. Even if the various works are done by the MEF [1] for the
calculation of structures, it remains unable to simulate the problems having disconti-
nuities caused by cracks, holes, other bi-material interfaces and modeling the propa-
gation of discrete cracks. This last requires a remeshing on each increment and a mesh
compliant, which is difficult and very expensive in terms of time.

To solve the numerical difficulties corresponds to the problems produced by the
cracks, several techniques were introduced such as, The element free Galerkin approach
[2], Boundary element method [3], Extended Finite element method [4], peridynamic
models [5], modeling with phase-field [6]. Among all the various processing techniques
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for modeling structures, the most used method so far is the XFEM, this method based on
the unit partition [7], and it allowed meshing the structure without taking into account
the crack to describe the opening of the crack and the singularity at its tip, special shapes
functions are inserted. The approximation of the geometry and the solution performed
by various basic functions during the use of such calculation technique as FEM, XFEM.
Consequently, they present discretization errors [8]. To eliminate these errors, Hugues
et al. [9] developed a new computation tool called Iso- Geometric Analysis (IGA). This
method created a relationship between computer-aided design CAD and finite element
method FEM. The idea is to apply the basic functions of CAD in the geometric rep-
resentation and to build the finite approximations. While the basic Lagrangian function
with the finite element method is the best known in the CAE, the most basic functions
widespread use of CAD are non-uniform and rational B-spline functions (NURBS). The
use of the IGA approach offers us the ability to make a simple refinement as well as an
exact description of the engineering structures, so the accuracy and robustness make
distinguish the method from the conventional method.

In recent years the IGA has appeared successfully in various engineering problems
[10] particularly in the mechanics of fracture [11]. Concerning cracking problems, to
describe the phenomenon of discontinuity on the long lips of the crack and the sin-
gularity at the crack tip, the enrichment functions through the unit partition method
integrated into IGA. There are many works like De Luycker et al. [12]; he applied the
method XFEM and IGA to study the mechanics of linear rupture. In the following
Gorashiet et al. [13] was extended this method to an enriched method (under the XIGA
name) to capture the behavior of cracked structures in 2D. XIGA has been a real
success in the modeling of fracture mechanics [14], cracking of a thin shell [15].

This work is done to study a stationary crack in a 2D structure using the imple-
mentation of the XIGA. We will present the concept of the XFEM and a generalization
on the isogeometric method then a description of the XIGA method. Finally, simple
examples to compare the new approach with the XFEM approach.

2 The Extended Finite Element Method

2.1 Representation of the Crack

The XFEM method has appeared as an alternative to the classical finite element
method, it based on the principle of unit partition [7], it is able to follow the crack
without being in conformity with the mesh thus it doesn’t require to do this remeshing
operation.

At first, the shape of the crack meshed with triangles independently of the structural
mesh.

Second, the level set functions called (w, u) are calculated at nodes of the geometry
around to the crack surface as despite in Fig. 1.
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2.2 Enrichment Approach

The essential idea of XFEM is to add enrichment function to the classical finite element
method [16]. Therefore, after the crack is presented by level set function, it is
achievable to enrich the displacement field by inserting enrichment shape functions and
related degrees of freedom to the discretization. In fact, the mesh of the structure is
created without any regard of the crack and XFEM could take it into account only by
appending specific enrichment function. According to the partition of unity, discon-
tinuous shape function (called Heaviside) presented by Eq. (1) is added at the nodes
corresponds to the elements completely cut by the crack, thus the singular shape
functions described by Eq. (2) are added at the nodes of the elements including the
crack front.

HðxÞ ¼ þ 1 if u xð Þ[ 0 above the crack
�1 if u xð Þ\0 Below the crack

�
ð1Þ

F1 xð Þ ¼ ffiffi
r

p
sin ðh=2Þ; F2 xð Þ ¼ ffiffi

r
p

sin ðh=2Þ sinðhÞ;
F3 xð Þ ¼ ffiffi

r
p

cos ðh=2Þ; F4 xð Þ ¼ ffiffi
r

p
cos ðh=2Þ sin ðhÞ: ð2Þ

With r and h are polar coordinates attached to the crack tip.
Let X represent the solution domain, XH the nodes of the elements cut by the crack

and XF the nodes of the elements which crack tip placed. So the displacement field
with the XFEM discretization can be represented as follows:

U xð Þ ¼
X

i2X Ni xð Þui þ
X

i2XH
Ni xð ÞH xð Þai þ

X
i2XF

Ni xð Þ ½
X

j¼1;::4
FJ xð ÞbJ;i�

ð3Þ

Where Ni is the finite element shape function linked to the node i, then ui, ai, bJ;i
represent the classical, discontinuous and singular degrees of freedom [16].

The isotropic enrichment functions represented in Eq. (2) are the basic and the most
used type of enrichment functions [17]. Since the structure has an elastic behavior, the
use of this type of enrichment function increases the precision of the approximation.

In order to obtain an optimal discretization, that is to say, to have a minimum
number of degrees of freedom, Fig. 2 Shown the topology of enrichment followed.

Fig. 1. Level set function
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Only the elements that have cut through the crack enriched. There are two strategies
of enrichment; geometry enrichment which based on the implementation of a fixed
zone around the crack tip. This method improves the convergence of the solution [18],
for the other approach that might have been examined is the degrees of freedom,
collecting that has been presented in [19].

During the propagation of the crack, novel singular and discontinuous degrees of
freedom are included in the approximation (see Fig. 2).

3 A Brief Presentation of the Isogeometric Analysis IGA

The most used basic functions of IGA are the NURBS; they commonly used to
approximate the fields of displacement and geometry in a given domain. IGA has made
it possible to eliminate all discretization errors caused by the geometric approximation.

The vector of knots n can be ordered in the following way;

n ¼ fn1; n2; n3; . . .. . .nnþ pþ 1g ð4Þ

With ni 2 < is the i-th knot, i is the index of the node, i 2 {1,2,3……n + p + 1}
with p is the polynomial degree of the b-spline and n is the number of the associated
function.

3.1 Shape Function

For a given order p, the B-spline basis functions are defined recursively from the node
vector by applying the cox-of-boor formula, starting with the constant functions
(P = 0):

Ni;0 ¼ 1 ni � n\niþ 1

0 Otherwise

�
ð5Þ

Then, we build for p > 0:

Ni;p nð Þ ¼ n� ni
niþ p � ni

Ni;p�1 nð Þþ niþ pþ 1 � n

niþ pþ 1 � niþ 1
Niþ 1;p�1 nð Þ ð6Þ

Fig. 2. Enrichment technique
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A curve NURBS of order p defined by n + 1 control point:

P(nÞ¼
Xn

i¼0
Ri;p nð ÞXi ð7Þ

Where:

Ri;p ¼ Ni;p nð ÞwiPn
i¼0 Ni;p nð Þwi

ð8Þ

We take note that:
{Ri;pg: Function NURBS
{Xig: {Xi1 ;Xi2g the coordinates of the control point set.

3.2 The Discretization of a Cracked Structure with IGA

In the context of elastic linear mechanics, consider a domain with the following
boundary conditions (see Fig. 3):

Cu: Dirichlet boundary, Ct: Neumann boundary, Cc: crack surface
Therefore, the equilibrium equation and the boundary conditions of this problem

can be represented in the following form:

r:rþ b ¼ 0 on X ð9Þ

r � n ¼ t on Ct ð10Þ

r � n ¼ 0 on Cc ð11Þ

u ¼ �u on Cu ð12Þ

Where, r, b, u corresponds respectively to Cauchy stress tensor, body force,
displacement.

Fig. 3. Mechanical problem
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The law hook gives the behavior law of a linear elastic problem:

r ¼ D e ð13Þ

With the deformation, a tensor can be written in the form:

e ¼ rsu on X with rs ¼
@=@x 0
0 @=@y
@=@y @=@x

2
4

3
5 ð14Þ

And D represents the elastic matrix.
Any deformable-body under external stress has the weak formulation of the fol-

lowing equilibrium equation:

Z
X
r : u dX�

Z
X
b : u dX�

Z
Ct

t : u dCt ¼ 0 ð15Þ

Through this equation, we can obtain the following discrete equation system:

K½ � Uf g ¼ ff g ð16Þ

With, K represents the global stiffness matrix.
U the vector of nodal unknowns
f the vector of forces
In this work, the displacement field approximation and domain geometry are done

by integrating the NURBS of the IGA technique.

Uh nð Þ ¼
Xnen

i¼1
Ri nð Þui ð17Þ

XðnÞ ¼
Xnen

i¼1
Ri nð ÞXi ð18Þ

Hence, R (nÞ represents the basic function NURBS and nen = (p + 1) � (q + 1)
defines the number of control points in n1 and n2 directions, then p and q are the orders
of the curve in the direction n1 and n2 respectively.

n = (n1, n2) represents the parametric space
X = (X1;X2Þ Represents physical coordinates
Uh Represents the displacement approximation

4 Extended Isogeometric Analysis (X-IGA)

This new tool (XIGA) has been improved to allow the modeling of cracks without
taking into account the mesh chosen for the calculation. In this method, using the unit
partitioning principle in enriching the conventional displacement approximations by
suitable enrichment functions. To model the discontinuities, various types of enrichment
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exist. XIGA removes all unchangeable compatible mesh. To extract local discontinuous
fields and singular fields using the concept of the XFEM method, the formula for the
enriched displacement approximation is represented as follows:

UhðnÞ ¼
Xnen

i¼1
Ri nð Þuþ

Xns

j¼1
Ri nð ÞfHðnÞ � HðnjÞgaj þ

Xnt

k¼1
Rk nð Þ

X4

a¼1
½baðnÞ � bankÞ�bak

ð19Þ

In this formulation above, the polynomials of Lagrange have been replaced by basic
functions NURBS Ri to have a new numerical method. ui represents the traditional
degree of freedom and aj are the enriched degree of freedom corresponds to the crack
lip, bak introducing the enriched degree of freedom corresponds to the crack tip. ns and
nt respectively represent the number of basis functions having the crack lips in their
support and the number of basic functions corresponds to the crack tip in the support as
shown in Fig. 4.

In the formula below, H(n) represents the Heaviside function [16] it receives the
value +1 when it is in the upper side of the crack and −1 on the opposite side. ba(nÞ
represents the functions of enrichment of the crack tip so the Eq. (20) represents these
functions in local polar coordinates (r,h):

baðnÞ ¼
ffiffi
r

p ðsin ðh=2Þ; sin ðh=2Þsin ðhÞ; cos ðh=2Þ cos ðhÞÞ ð20Þ

The various matrices constituting the XIGA model can be represented in the fol-
lowing way:

½Kij� ¼
Kuu
ij Kua

ij Kub
ij

Kau
ij Kaa

ij Kab
ij

Kbu
ij Kba

ij Kbb
ij

2
64

3
75 ð21Þ

ffg ¼ f ui ; f
a
j ; f

b1
k ; f b2k ; f b3k ; f b4k

n oT
ð22Þ

Fig. 4. A quadrature NURBS mesh with the enrichment approach
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f ui ¼
Z
X

RT
i � b dXþ

Z
C

RT
i � t dC ð23Þ

f aj ¼
Z
X

RT
j fH(nÞ � H(njÞg b dXþ

Z
C

RT
j fH(nÞ � H(njÞg t dC ð24Þ

f bak ¼
Z
X
RT
k fbaðnÞ � baðnkÞg b dXþ

Z
C
RT
k fbaðnÞ � baðnkÞg t dC ð25Þ

Kr;s
ij ¼

Z
X
BrT
i ¼ DBs

j dX with r; s ¼ u; a; b ð26Þ

Ba
i ¼

ðRiÞ;x1H 0
0 ðRiÞ;x2H

ðRiÞ;x2H ðRiÞ;x1H

2
4

3
5 ð27Þ

Bba
i ¼

ðRibaÞ;x1 0
0 ðRibaÞ;x2

ðRibaÞ;x2H ðRibaÞ;x1

2
4

3
5 ða ¼ 1; 2; 3; 4Þ ð28Þ

Bb
i ¼ ½Bb1

i Bb2
i Bb3

i Bb4
i � ð29Þ

5 Numerical Result

To evaluate the performance and accuracy of the XIGA, we will take a simple problem
of elastic linear mechanics; an edge and center crack problems. We used the simulation
code developed by [20] and the result of the simulation will be compared with the
XFEM method. We have chosen an order 3 for basic functions NURBS in both
parametric directions. To do the simulation we took the properties of the following
material: E = 107 MPA, v = 0,3 for edge crack and E = 3 107 MPa, v = 0,3 for center
crack. We assumed the plane strain condition.

5.1 Example of a Plate with an Edge Crack

The geometry of the plate is of dimension W � L as the Fig. 5 indicate. In the top edge,
uniform stress is applied r = 1. a is the crack length with a = 0,45. In the bottom right
corner of the domain U1 = U2 = UR3 = 0 and in the top right corner U1 = UR3 = 0.
The result of the displacement Uy for an edge crack is represented in the Fig. 6.
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5.2 Example of a Plate with a Center Crack

The geometry of the plate is of dimension W � L as the Fig. 7 indicate. In the top edge,
uniform stress is applied r = 1. a is the crack length with a = 0,25. The result of the
displacement Uy for a center crack is represented in the Fig. 8.

Fig. 7. Plate with a center crack

Fig. 5. Edge crack in tension

Fig. 6. Displacement contour plot Uy for an edge crack
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The results obtained by the XFEM method and the XIGA method are identical so
we can use this novel method to study the various defects produced by the crack and to
follow the crack propagation.

6 Conclusion

In this work, the simulation of a cracked structure is done by the implementation of the
extended isogeometric analysis X-IGA method, which is the extended of the isogeo-
metric method. By applying the concept of the XFEM method, the enrichment func-
tions are integrated to extract the discontinuous and singular local fields. The
integration of this method in the finite element calculation makes it possible to make a
connection between the CAD and FEM to minimize the errors caused by the dis-
cretization thus obtaining the results more efficient. For future researches, we decide to
apply this method to follow the propagations of the cracks on the shell structures,
which are subjected to internal pressures like pipelines.
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